Startseite » 3D » Infinite Polyeder

Infinite Polyeder

Drei unendliche regelmäßige Polyeder (engl. regular skew polyhedra oder skew apeirohedra) wurden im Jahre 1926 von John Flinders Petrie und Harold Scott MacDonald Coxeter entdeckt. Die blieben lange unbeachtet. Erst in den späten sechziger Jahren hat Alexander Frank Wells einige infinite reguläre Polyeder beschrieben.

Das einfache Polyeder vom Petrie ist aus unendlich vielen Quadraten gebaut. Das primitive kubische Gitter fungiert als das Bauschema.

s6_petrie

s6-petrie

Die Quadrate teilen den Raum in zweil gleiche Teile, also der „Innenraum“ ist kongruent mit dem „Außenraum“. Auch zwei andere Polyeder vom Petrie halbieren den Raum.

Verwenden wir zum Bauen z. B. Trapeze erhalten wir eine ähnliche Struktur.

s6_trapez

s6-trapez

Diesmal unterscheidet sich der „Innenraum“ vom „Außenraum“. Das sieht man deutlich, wenn wir anderen Ausschnitt der Struktur auswählen.

1-s6_trapez

1-s6-trapez

Durch eine einfache Umwandlung der Trapeze in Deltoide erhalten wir ein unendliches Poplyeder, das wieder den Raum halbiert.

s6_delta

s6-delta

Sehr schön ist die Variante dieser Struktur, wenn wir statt Polygone die Ausschnitte eines hyperbolischen Paraboloids verwenden.

s6_ph

s6-ph

Das zweite Polyeder vom Petrie ist aus unendlich vielen Sechsecken gebaut.

s6_petrie2

s6-petrie2

Das erste und das zweite Petrie-Polyeder sind dual!

Der Vollständigkeit halber noch das dritte Polyeder vom Petrie, das auch aus unendlich vielen Sechsecken gebaut ist. Es ist zu sich selbst dual.

s4_petrie3

s3-petrie3

Advertisements
Dieser Beitrag wurde unter 3D veröffentlicht. Setze ein Lesezeichen auf den Permalink.

Kommentar verfassen

Trage deine Daten unten ein oder klicke ein Icon um dich einzuloggen:

WordPress.com-Logo

Du kommentierst mit Deinem WordPress.com-Konto. Abmelden / Ändern )

Twitter-Bild

Du kommentierst mit Deinem Twitter-Konto. Abmelden / Ändern )

Facebook-Foto

Du kommentierst mit Deinem Facebook-Konto. Abmelden / Ändern )

Google+ Foto

Du kommentierst mit Deinem Google+-Konto. Abmelden / Ändern )

Verbinde mit %s